Area Integral Estimates for the Biharmonic Operator in Lipschitz Domains

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimates for the Stokes Operator in Lipschitz Domains

We study the Stokes operator A in a threedimensional Lipschitz domain Ω. Our main result asserts that the domain of A is contained in W 1,p 0 (Ω)∩W (Ω) for some p > 3. Certain L∞-estimates are also established. Our results may be used to improve the regularity of strong solutions of Navier-Stokes equations in nonsmooth domains. In the appendix we provide a simple proof of area integral estimate...

متن کامل

On Estimates of Biharmonic Functions on Lipschitz and Convex Domains

Abstract. Using Maz’ya type integral identities with power weights, we obtain new boundary estimates for biharmonic functions on Lipschitz and convex domains in R. For n ≥ 8, combined with a result in [S2], these estimates lead to the solvability of the L Dirichlet problem for the biharmonic equation on Lipschitz domains for a new range of p. In the case of convex domains, the estimates allow u...

متن کامل

A Bilinear Estimate for Biharmonic Functions in Lipschitz Domains

We show that a bilinear estimate for biharmonic functions in a Lipschitz domain Ω is equivalent to the solvability of the Dirichlet problem for the biharmonic equation in Ω. As a result, we prove that for any given bounded Lipschitz domain Ω in Rd and 1 < q < ∞, the solvability of the Lq Dirichlet problem for ∆2u = 0 in Ω with boundary data in WA(∂Ω) is equivalent to that of the Lp regularity p...

متن کامل

Weighted Estimates for the Averaging Integral Operator

Let 1 < p ≤ q < +∞ and let v, w be weights on (0,+∞) satisfying: (?) v(x)xis equivalent to a non-decreasing function on (0,+∞) for some ρ ≥ 0; [w(x)x] ≈ [v(x)x] for all x ∈ (0,+∞). We prove that if the averaging operator (Af)(x) := 1 x R x 0 f(t) dt, x ∈ (0,+∞), is bounded from the weighted Lebesgue space Lp((0,+∞); v) into the weighted Lebesgue space Lq((0,+∞);w), then there exists ε0 ∈ (0, p−...

متن کامل

Weighted Estimates in L for Laplace’s Equation on Lipschitz Domains

Let Ω ⊂ Rd, d ≥ 3, be a bounded Lipschitz domain. For Laplace’s equation ∆u = 0 in Ω, we study the Dirichlet and Neumann problems with boundary data in the weighted space L2(∂Ω, ωαdσ), where ωα(Q) = |Q−Q0|α, Q0 is a fixed point on ∂Ω, and dσ denotes the surface measure on ∂Ω. We prove that there exists ε = ε(Ω) ∈ (0, 2] such that the Dirichlet problem is uniquely solvable if 1 − d < α < d − 3 +...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1991

ISSN: 0002-9947

DOI: 10.2307/2001830